Images as (policy-ready) data

Dani Arribas-Bel [@darribas]

Policy Data & Images

en un clic

¿Cuántos habitantes...?

Última hora				S
22 Nov 19. Coyuntura turística	hotelera. CTH			
21 Nov 19 . Entrada de pedidos	s en la industria. IEP			
21 Nov 19. Indices de cifras de	e negocios en la Indu	ıstria. ICN		
21 Nov 19. Indicadores de acti	vidad del sector serv	ricios. IASS		
20 Nov 19. Demografía armon	izada de empresas			
19 Nov 19. Estadística del taxi				
			Más no	oticias
Indicador	Periodo	Valor	Variación (%)	
IPC	2019M10	105,126		0,1
EPA. Ocupados (miles)	2019T3	19.874,3	1	,77

Indicador		Periodo	vaior	variacion (%)	
IPC		2019M10	105,126	0,1	<u></u>
EPA. Ocupados (miles)		2019T3	19.874,3	1,77	<u></u>
EPA. Tasa de paro	1	2019T3	13,92	-0,63	<u></u>
PIB	2 4	2019T3	110,9	2,0	
Población total (miles)	3	2019	46.934,6	0,59	T

- 1. Valor en %. Variación: diferencia respecto a la tasa del mismo período del año anterior
- 2. Índice volumen encadenado, ref. 2015. Datos corregidos de efectos estacionales y de calendario
- 3. Cifras de población a 1 de enero de 2019. Datos provisionales
- 4. Datos avance

Mercado laboral

Síntesis estadística

Estadísticas territoriales

Información estadística europea Indicadores económicos. FMI

ODS. Indicadores Agenda 2030

LMXJVSD

4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30

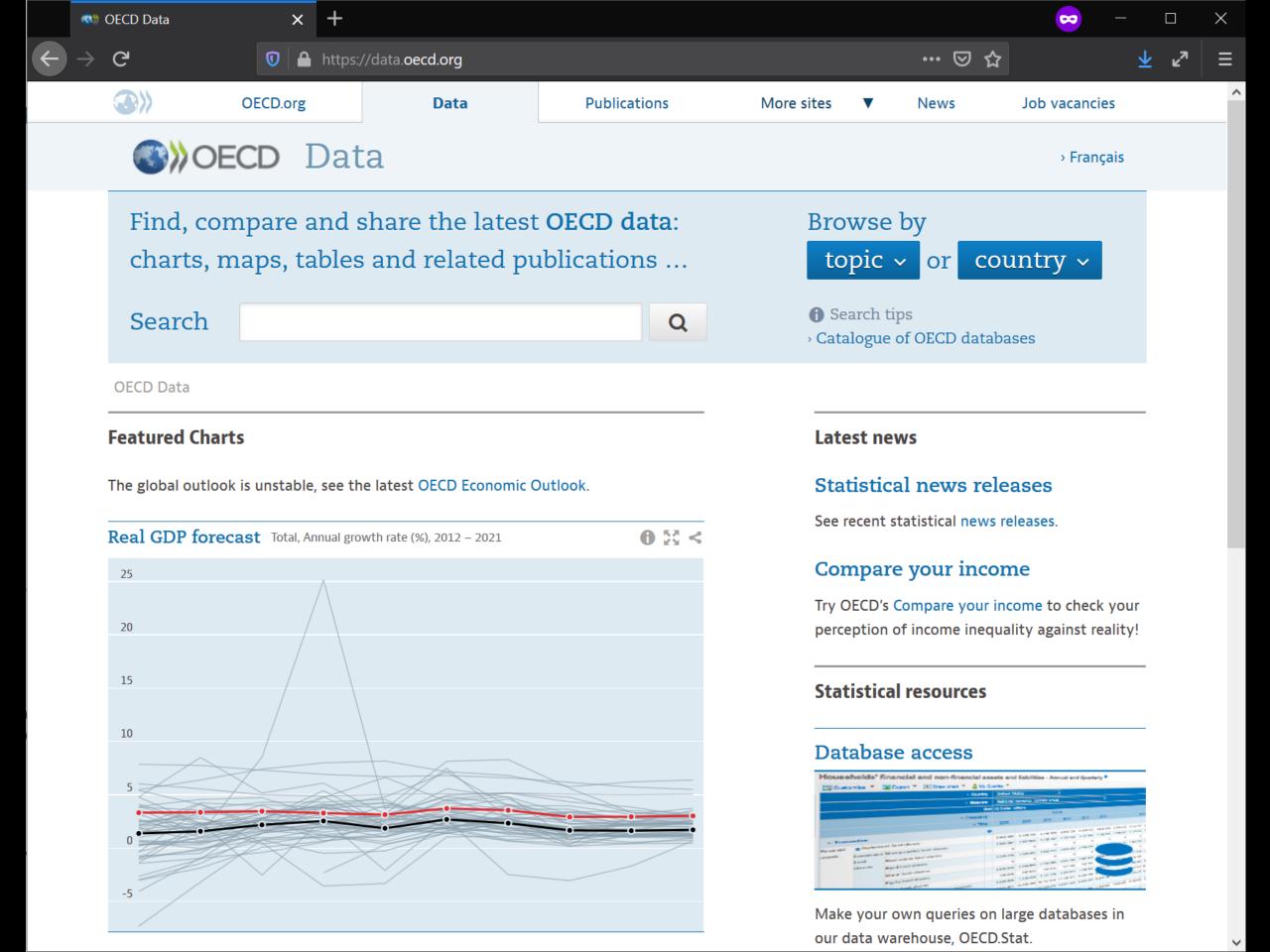
Calendario 2019

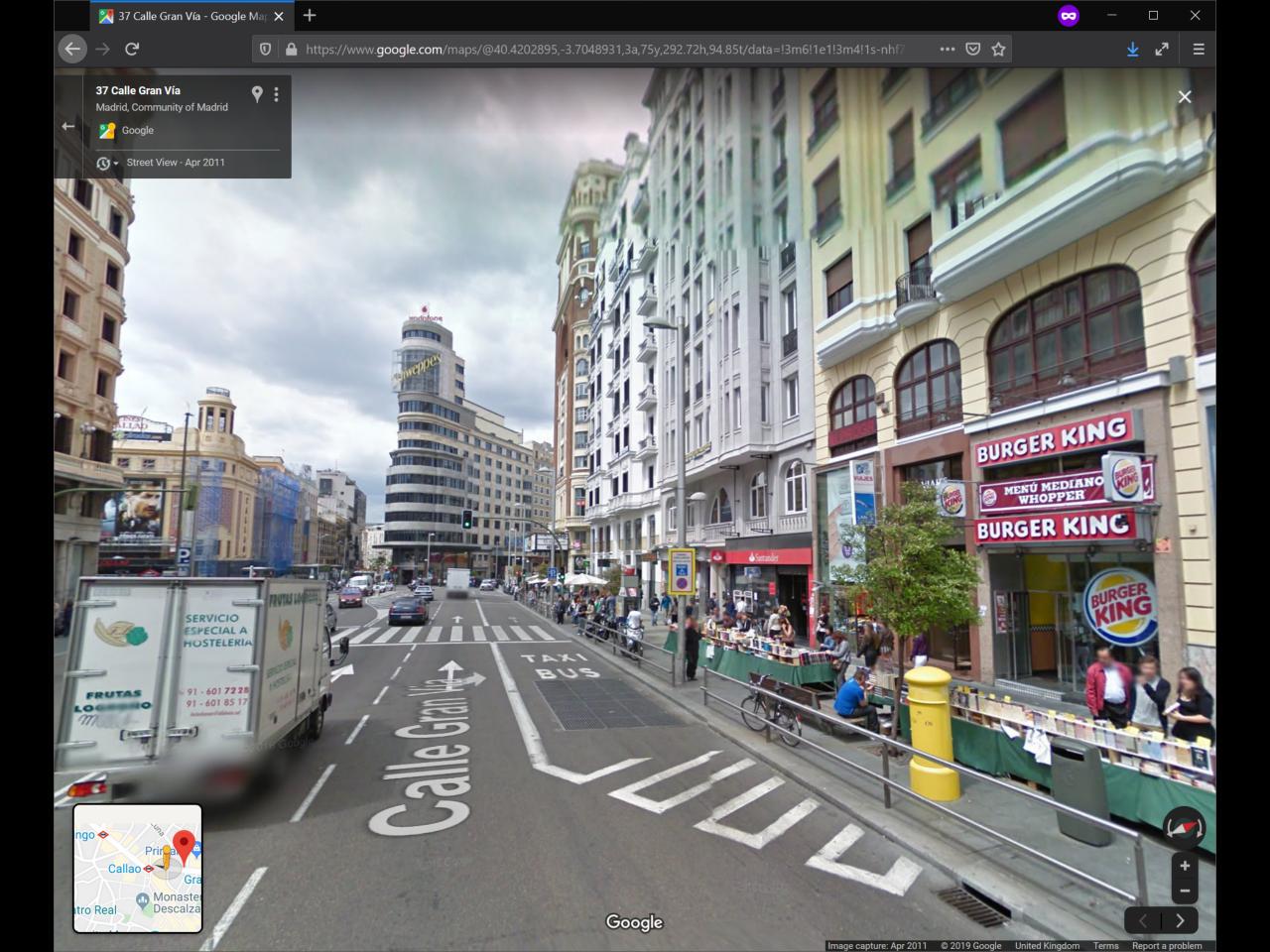
1 2 3

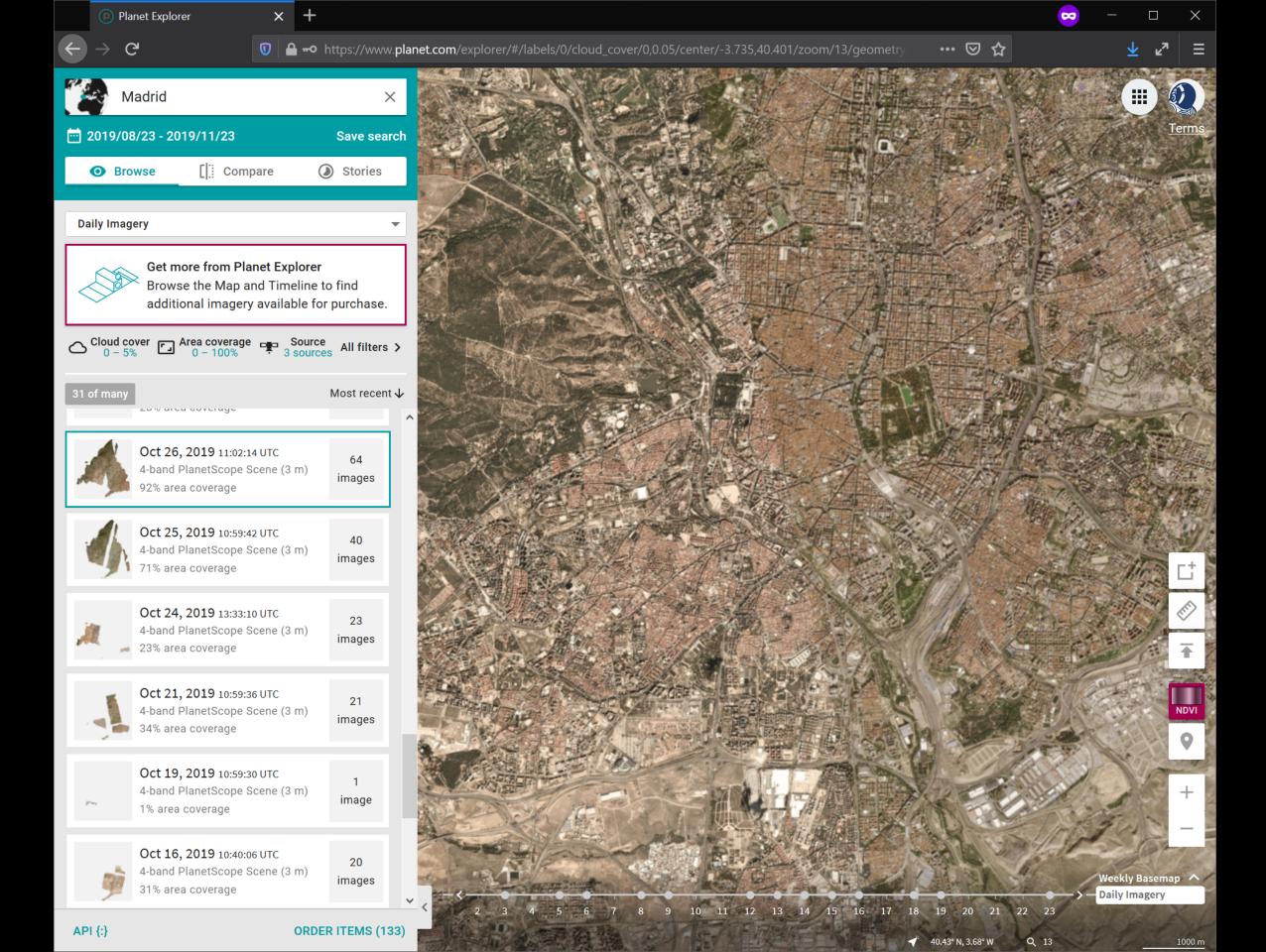
(IPC) Servicios Sociedad

iCal III

Noviembre







Why Images?

- Visual cues encode of socio-economic information
- Largely unexplored (in Social Sciences)
- Nicely complement other available data

Why now?

- There's a lot of them
- They get better every day
- Technological opportunism

Some examples...

Measuring Green Coverage

Measuring Green Coverage

- Urban green space has many benefits to urban dwellers
- But is is hard/expensive to measure
- Better quantification can inform evidence-driven policies

Input Data

Google Street View (GSV) **Imagery**

Stage 1

Vegetation Pixel Identification & Classification

Pixel Class

Binary

Non-green

Multiple

Tree Grass

Plant

Earth Sky Car

Boat Water River House

Building

Wall Floor

Skyscraper

Methods

1. Threshold Methods

 L^*a^*b

Random Forest

2. Semantic Segmentation

Pyramid Scene Parsing Network

(PSPNet)

Pixel Classification

lmage ID	Vegetation Pixel*	
1	1	
1	0	
1	1	
:	:	
1	1	
2	0	
2	0	
2 2 :	1	
:	:	
2 :	1	
:	:	
n	1	
n	1	
n	1	
:	:	
n	n	

*1: Yes; 0: No

Stage 2 **Aggregation Score**

Outcome

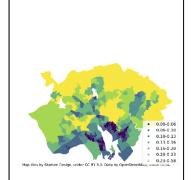
Hierarchical Regression Model

Hierarchical Tree Score

Level 1: Image level

Level 2: Geographic area level

Level 2: Area ID	Level 1: Image ID	Vegetation Pixel*
1	1	1
1	1	0
1	1	1
:	:	:
1	1]
1	2	0
1	2	0
1	2	1
:	:	:
1	2	1
:	:	:
n	n	1
n	n	1
n	n	1
:	:	:
n	n	0



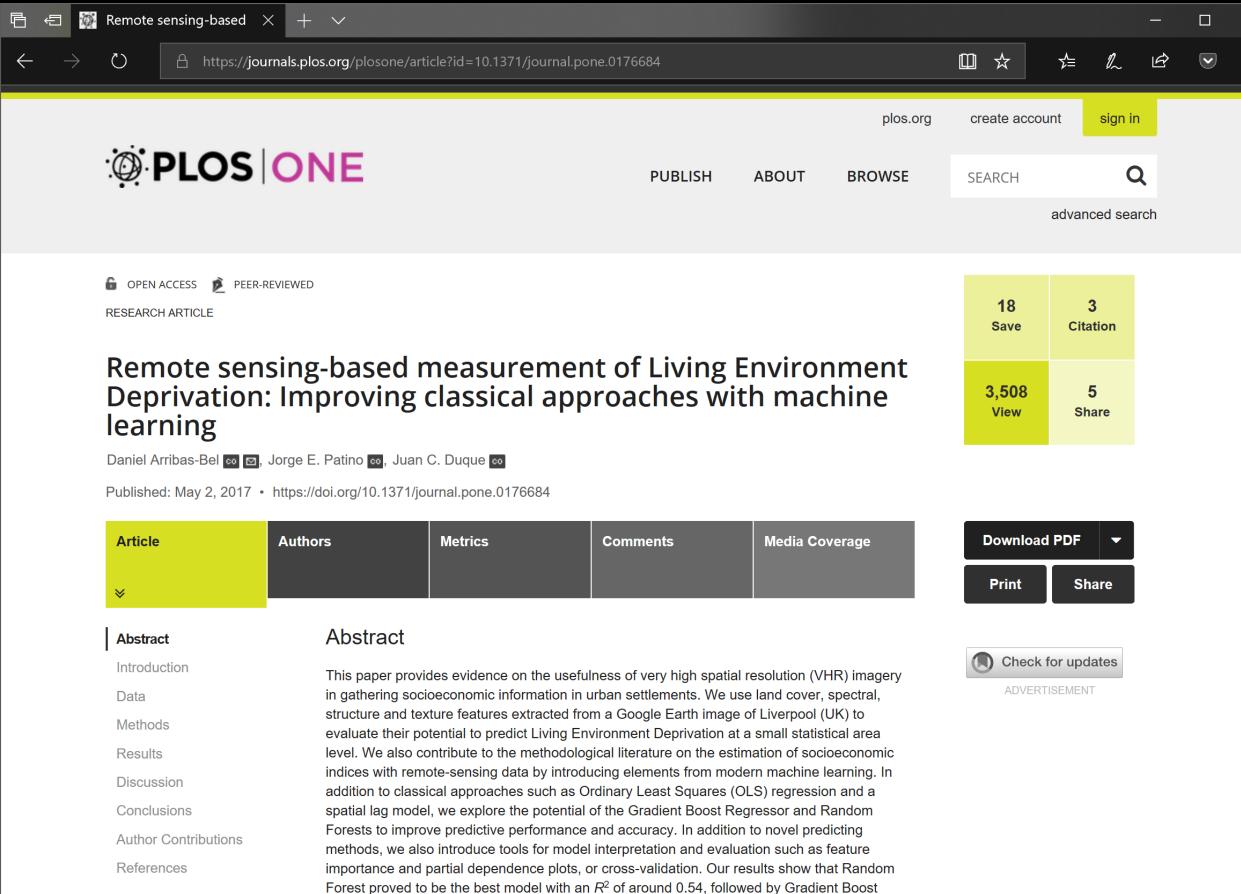
So what?

- Information on exposure to vegetation in urban environments is hard to generate...
- ... But very important for a variety of challenges, from pollution to mental health
- (Geographic) Data Science can help produce timely datasets at scale

Aerial/Satellite Imagery

The physical appearance of a human settlement is a reflection of the society that inhabits it

Urban areas with similar built environment have similar social and demographic characteristics



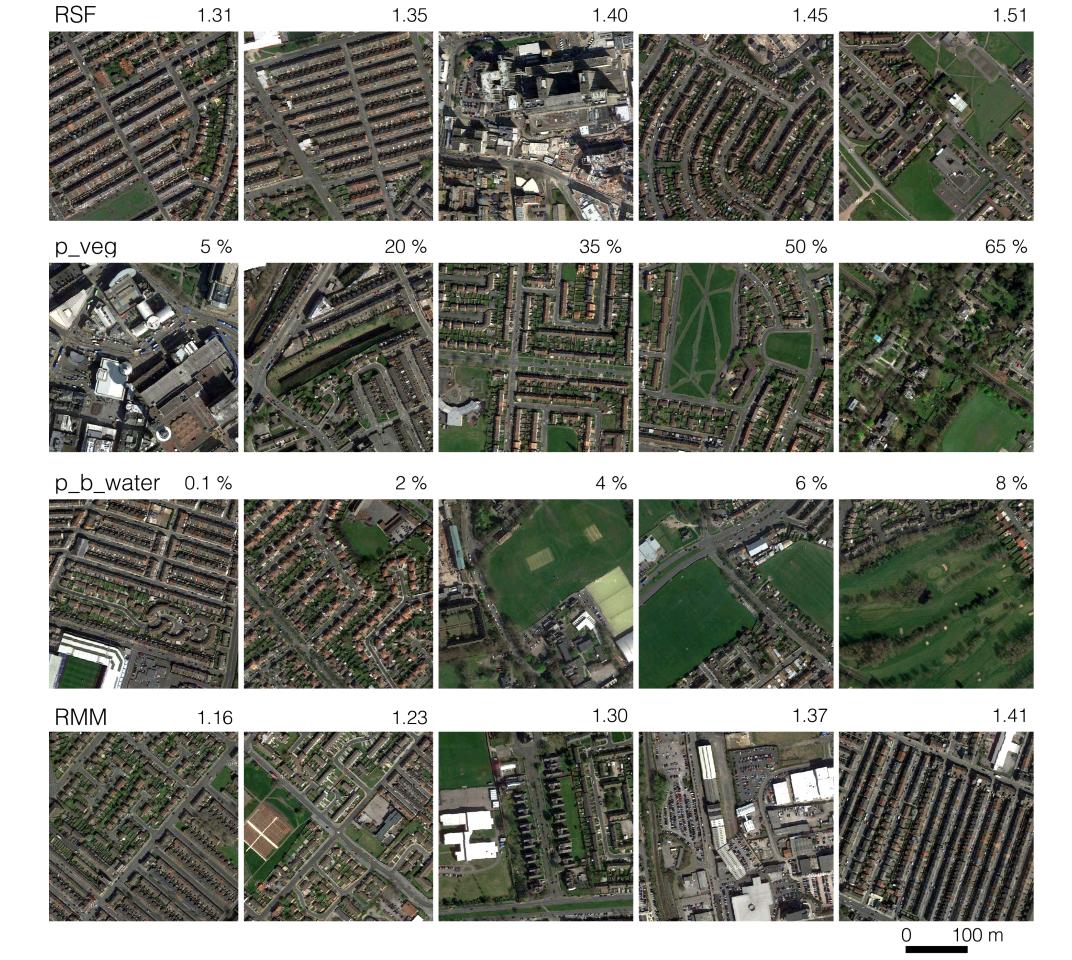
Regressor with 0.5. Both the spatial lag model and the OLS fall behind with significantly lower

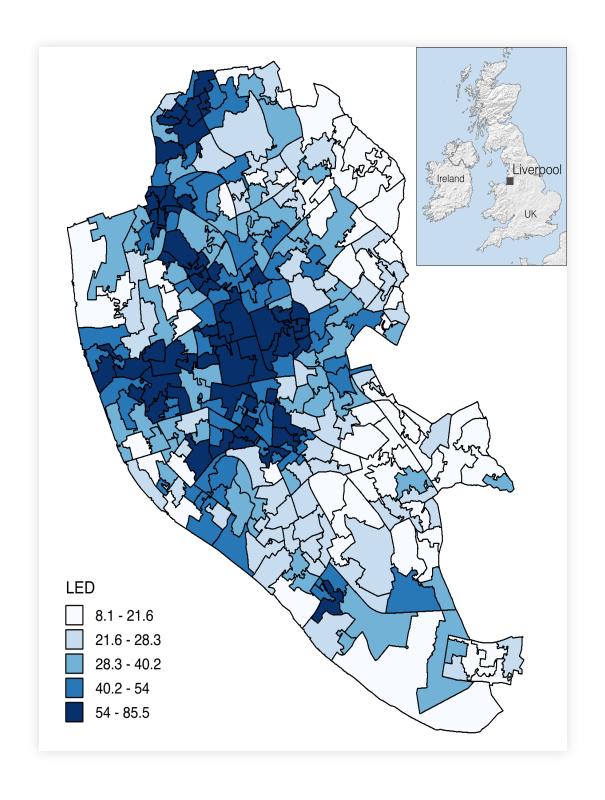
performances of 0.43 and 0.3, respectively.

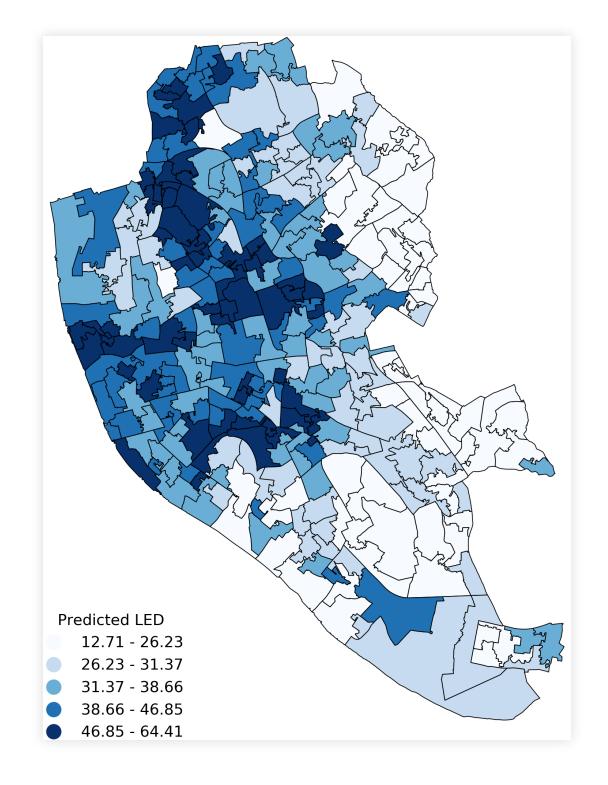
Reader Comments (0)

Media Coverage (0)

X







So what?

- Generating an update of IMD is expensive
- Satellite images are already being collected
- "Intercensal" updates based on satellites?

To take away

- There's a *lot* of images (and more to come!)
- Images can be useful for policy analysis
- To make the most of them, you need (Geographic) Data Science

Images as (policy-ready) data

Dani Arribas-Bel [@darribas]

